1) Use (Gauss) Divergence Theorem carefully to find the outward flux $\iint_{\boldsymbol{S}} \boldsymbol{F} . \boldsymbol{n} \quad \boldsymbol{d} \boldsymbol{\sigma}$ of the vector field $\quad F=1 / \rho<9 x, y, 5 z>\quad$ where $\rho=\sqrt{x^{2}+y^{2}+z^{2}}$ across
i) the surface $\rho=2$
ii) the surface surrounding the region $1 \leq \rho \leq 2$ between two spheres.
2) Let $\mathbf{F}=\langle\mathbf{5 y}, \mathbf{8 y} \mathbf{+ 2 z}, \mathbf{4 z}\rangle$ and let S be the open paraboloid $z=9-\left(x^{2}+y^{2}\right) \& z \geq 5$.

Use Divergence Theorem to find $\iint_{\boldsymbol{S}} \boldsymbol{F} . \boldsymbol{n} \boldsymbol{d} \boldsymbol{\sigma}$ (where n is the outer normal vector to our surface)
$\mathbf{2}^{\prime}$) Let $\mathbf{F}=\langle\mathbf{4 x}, \mathbf{8 y}, \mathbf{4 z}\rangle$ and let S be the cylinder $x^{2}+y^{2}=4$ which is closed on top through $\mathrm{z}=3$; but open on bottom through the plane $\mathrm{x}+2 \mathrm{y}+\mathrm{z}=2$.
Use Divergence Theorem to find $\iint_{\boldsymbol{S}} \boldsymbol{F} . \boldsymbol{n} \boldsymbol{d} \boldsymbol{\sigma}$ (where n is the outer normal vector to our surface)
3) Use Stokes' Theorem to find the outward flux of CURL(F)
$\iint_{\boldsymbol{S}} \operatorname{Curl}(\boldsymbol{F}) . \boldsymbol{n} \boldsymbol{d} \boldsymbol{\sigma}$ of the vector field $F=\langle 6 \mathbf{y}, 4 \mathbf{x}, \quad \mathbf{z}\rangle$ across the upper part of the sphere $\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}=25$ whose boundary C lies on the plane $\mathrm{z}=4$.
4) Let $\mathbf{F}=\langle\mathbf{5 y}, \mathbf{8 x}, \mathbf{z}\rangle$ and let S be the open paraboloid $z=10-\left(x^{2}+\mathrm{y}^{2}\right) \& z \geq 6$ with boundary C. Find the counter clockwise circulation $\oint_{C} F . d r$
(i) directly (by parametrizing C), and
(ii) by Stokes' Theorem.
(iii) Find $\iint_{\boldsymbol{S}} \operatorname{Curl}(\boldsymbol{F}) . \boldsymbol{n} \boldsymbol{d} \boldsymbol{\sigma}$ by Stokes' Theorem, and
(iv) solve part (iii) directly.

4') Use Stokes' theorem to evaluate the counterclockwise circulation of the field $\mathbf{F}=$ $y^{2} \boldsymbol{i}-y \boldsymbol{j}+3 z^{2} \boldsymbol{k}$ around the boundary of the ellipse in which the plane $2 x+6 y-3 z=6$ meets the cylinder $x^{2}+y^{2}=1 \quad$ (counterclockwise).
5) Solve the IVP $\quad x y y^{\prime}-\left(x^{2}+x^{5 x}\right) y^{9 / 4}=2 y^{2} \quad ; y(1)=\ldots$
6) Change the following (non-exact) D.E to exact then STOP!

$$
\left(8-7 y+\mathbf{x}^{3} e^{x}\right) \mathbf{d x}+x d y=0
$$

7) Solve the DE $\left(7 y^{2}+2 x y\right) y^{\prime}=\left(3 x^{2}+4 x y\right)$
8) Solve the IVP $x y$ ' $=y \sin (x y+5)$; $y(3)=0$
9) Solve $y^{\prime}=\left(\cos x+3 x^{2}\right) e^{\left(x^{3}+\sin x\right)}\left(y^{2}-9\right)$
