Math 202 - Quiz I --- Sample 005

1) Use (Gauss) Divergence Theorem carefully to find the outward flux $\iint_S F.n \, d\sigma$

of the vector field $F = 1/\rho < 9x$, y, 5z > where $\rho = \sqrt{x^2 + y^2 + z^2}$ across

- i) the surface $\rho = 2$
- ii) the surface surrounding the region $1 \le \rho \le 2$ between two spheres.

2) Let $\mathbf{F} = \langle 5\mathbf{y}, 8\mathbf{y}+2\mathbf{z}, 4\mathbf{z} \rangle$ and let S be the <u>open</u> paraboloid $z = 9 - (x^2 + y^2)$ & $z \ge 5$. Use Divergence Theorem to find $\iint_{\mathbf{S}} \mathbf{F} \cdot \mathbf{n} \, d\sigma$ (where n is the outer normal vector to our surface)

2') Let $\mathbf{F} = \langle 4\mathbf{x}, 8\mathbf{y}, 4\mathbf{z} \rangle$ and let S be the cylinder $\mathbf{x}^2 + \mathbf{y}^2 = 4$ which is closed on top through $\mathbf{z} = 3$; but open on bottom through the plane $\mathbf{x}+2\mathbf{y}+\mathbf{z}=2$.

Use Divergence Theorem to find $\iint_{S} F.n \, d\sigma$ (where n is the outer normal vector to our surface)

3) Use <u>Stokes' Theorem</u> to find the outward flux of CURL(F)

 $\iint_{S} \text{Curl}(F).n \, d\sigma \text{ of the vector field } \mathbf{F} = \langle 6\mathbf{y}, 4\mathbf{x}, \mathbf{z} \rangle \text{ across the upper part of the sphere } \mathbf{x}^{2} + \mathbf{y}^{2} + \mathbf{z}^{2} = 25 \text{ whose boundary C lies on the plane } \mathbf{z} = 4.$

4) Let $\mathbf{F} = \langle 5\mathbf{y}, 8\mathbf{x}, \mathbf{z} \rangle$ and let S be the <u>open</u> paraboloid $z = 10 - (x^2 + y^2) \& z \ge 6$ with boundary C. Find the counter clockwise circulation $\oint_C F dr$

- (i) directly (by parametrizing C), and
- (ii) by Stokes' Theorem.
- (iii) Find $\iint_{S} \operatorname{Curl}(F).n \, d\sigma$ by Stokes' Theorem, and
- (iv) solve part (iii) directly.

4') Use Stokes' theorem to evaluate the counterclockwise circulation of the field $\mathbf{F} = y^2 \mathbf{i} - y \mathbf{j} + 3z^2 \mathbf{k}$ around the boundary of the <u>ellipse</u> in which the plane 2x + 6y - 3z = 6 meets the cylinder $x^2 + y^2 = 1$ (counterclockwise).

5) Solve the IVP $xyy' - (x^2 + xe^{5x})y^{9/4} = 2y^2$; y(1) =

6) Change the following (non-exact) D.E to exact then STOP! $(8-7y + x^{3}e^{x}) dx + xdy = 0$ 7) Solve the DE $(7y^{2} + 2xy)y' = (3x^{2} + 4xy)$

7) Solve the DE $(7y^2 + 2xy)y' = (3x^2 + 4xy)$ **8)** Solve the IVP $xy' = y\sin(xy + 5)$; y(3)=0

9) Solve $y' = (\cos x + 3x^2)e^{(x^3 + \sin x)} (y^2 - 9)$